BIOCHEMICAL STUDIES ON IMPROVEMENT OF SOYBEAN FLOUR PROTEINS BY

Turki, M.A.; Saad, S.M; Nadia Y. Attia and Abd-El-Aleem, I.M. Dept. of Agric., Biochem., Fac. of Agric., Moshtohor, Zagazig Univ.

ABSTRACT

Soybean flour obtained from Clark and Crowford soybean seeds was subjected to different heat treatments, heat alone or after addition of either sodium sulfite or cysteine. Heat alone inactivated about 64 to 70 % of the trypsin inhibitors content. In contrast exposing soy flour to the same temperature (75°C for 1hr) in the presence of 0.03 (M) sodium sulfite reduced the activity of trypsin inhibitor content to about zero. Addition of 0.128(M) cysteine to the flour and heating at 75°C for 1hr inactivated about 90 to 93% of the trypsin inhibitor.

The polyacrylamide gel electrophoresis (PAGE) protein patterns showed that most of the polypeptide destruction effect was noticed at high polarity molecules especially heat treatments without any addition. Heating soyflour for thr in the presence of 0.03 (M) Na2SO3 or cysteine showed less destruction of polypeptide chains and appearance of new bands.

Molecular weights of soybean flour protein subunits extracted after different heating treatments, as determined by SDS-PAGE, showed that heating soyflour for 1hr over 45 °C lead to disappearance of high molecular weight units (between 93,000 and 60,000 D). Addition of either 0,03(M) Na2SO3 or 0.128 (M) cysteine to soyflour and heating for 1hr showed very slight reduction in some high molecular weight subunits.

The digestibility index of the raw soy flour was improved by increasing heating temperature, especially after treatment of soyflour with either 0.03 (M) Na₂SO₃ or 0.128 (M) cysteine and heating to 100 °C for 1hr

Amino acid patterns showed that addition of either 0.03 (M) Na₂SO₃ or 0.128 (M) cysteine to soy flour and heating prevent to some extent the destruction of some amino acids and increased the sulfur amino acids. Therefore the amounts

of essential and non-essential amino acids were nearly closed to their amount in the native soy flour especially in case of heating at 65 °C for 1hr .

INTRODUCTION

The limited supply, the balance between the world food supply and the population are one of the major problems of the Twentienth century. Due to the high cost of the animal protein, especially in developing countries, attention was directed toward plant protein.

In Egypt much attention has been paid to soybean cultivation especially in new reclaimed areas to cover the shortage in protein and edible oil consumption. In 1991 the total area cultivated with soybean was 105792 feddan.

Soybean seeds contain the highest amount of protein (35-45%) in Leguminosae. This relatively abundant, inexpensive and good quality protein is being utilized in human food in a variety of forms including flour, soybean concentrates and soy protein isolate. While, the soybean contains a highly quality protein, it also contains various anti-nutritional factors which elicite diverse nutritional, biological and physiological response in animals (Rackis, 1972). Raw soybean inhibits growth, depress metabolizable energy and fat absorption, reduce protein digestibility, cause pancreatic hypertrophy, and reduce amino acids, vitamins and minerals availability (Rackis, 1965, 1972 and 1974).

One of the antinutritional factors which received the most investigation is the trypsin inhibitors which account for 30 - 50 % of the growth inhibitory effect of raw soybean meal and for nearly all the pancreatic hypertrophic response in affected animals.

Friedman et al. (1984) found that soyflour contained 37 ±2.66 mg/g trypsin inhibitors. Friedman and Gumbmann (1986) found that soyflour contained 50.4 trypsin inhibitor units/g samples. Safwat (1985) noted that the varieties Clark, Calland, and Colombous exhibited high effect in its antitrypsin activity. Salama (1988) studied trypsin inhibitor activities of some legume seeds and found that soybean seeds had the highest values followed by dry bean.

Birk (1961) studied the effect of heat treatments on purified trypsin inhibitor of soybean at various

temperatures for different periods. His results indicated a noticed loss of inhibitor activity after autoclaving for 20 min. at, $1bs/In^2$.

Friedman et al.(1982) heated soyflour in an aqueous medium from 25 to 93°C for one hr. The heat alone does not begin to inactivate the inhibitor until about 55 °C(around 10% inactivation). In contrast, inactivation in the presence of N-acetyl cysteine proceeded more rapidly, since 70% of inactivation occurred at 55°C and 94% at 85°C.

Friedman et al. (1984) found that heating soyflour at 45°C in pH 8.5 tris buffer for 1hr, in the presence of L-cysteine and N-acetyl - L-cysteine followed by dialysis to remove unreacted thiols resulted in the introduction of new half-cystine residues and lowered trypsin inhibitor content from 37.5 to 9.8 mg/g. While, protein efficiency ratio increased from 0.95 to 2.01 or 2.2, respectively

Friedman and Gumbmann (1986) found that treatment of raw soyflour at 75°C with 0.03 (M) sodium sulfite for one hr inactivated trypsin inhibitors completely leaving no sulfite residues in the soy proteins. They added that the action of sulfite ions on the protein molecule might lead to an improve in its quality by cleaving the protein disulfide bonds to form a thiol anion (P-S) and S-sulfocysteine derivative (P-S-S-SO₃), which can interact further with the generated (P-S) to form a new disulfide bond and (So₃) 2 . The net effect of this reaction is the rearrangement of protein disulfide bonds which was catalyzed in general by (So₃) $^{-2}$ ions.

The aim of this research is to study the improvement of soy flour protein through different heat treatments for inactivation trypsin inhibitors and evaluation of their nutritional value.

MATERIALS AND METHODS

Materials:

Soybean seeds (Clark and Crowford varieties) were obtained from Agric Res Center Giza The seeds were cleaned and finely ground

Hexane (B.p. 40 -60°C) was used for the extraction of oil from the ground seeds by immersing in an extractor to get rid of the existed fat The solvent was removed by evaporation in a rotavapor to obtain the soyflour samples

Heat treatments on soybean flours:

Scyflour samples were heated at 45, 65, 75, and 100 °C for 1hr in the absence and presence of 0.128 (M) of cysteine according to method described by Friedman et al. (1984).

Another heat treatment under the same abovementioned temperatures and period of heating was carried out in the presence of 0.015, 0.03 and 0.06 (M) sodium sulfite, according to Friedman and Gumbmann (1986).

Extraction of proteins

Defatted soybean flour was extracted using 0.02(N) NaOH according to the method described by Melnychyn and Wollcott (1971). The supernatant was adjusted to the iso-electric point (I.E.P.) of the protein. The precipitate was washed twice by distilled water, centrifuged then dried under high vacum at 45 °C.

Analytical methods:

Determination of trypsin inhibitor activity was measured according to the method described by Hamerstrand et al. (1981) using benzoyl -DL arginie - p - nitroanilide hydrochloride (BAPA) as synthetic substrate for trypsin.

Quantitative determination of amino acids were carried out according to Moore et al. (1958) using Bechman amino acid analyzer Model 121.

Determination of (In-vitro) digestibility index for soybean flour protein was accomplished according to the method described by Ford and Salter (1966)

Electrophoretical determination for soybean flour protein of Clark and Crowford varieties were carried out by using polyacrylamide gel electrophoresis (PAGE).

Molecular weights of the subunits of protein extracted from soybean flour was determined by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) according to the method described by Laemmli (1970) with some modifications. Slab gel was used instead of tube gel. Dimension of the slab gel was 11.5 cm (length)x11.5 cm (width) x1.0 mm (thickness). A custam - build apparatus unit which was similar to the Hoffer SE 500 vertical slab unit was used.

RESULTS AND DISCUSSIONS

I : Effect of heating treatments on trypsin inhibitor activity of soy flour:

The results concerning the effect of different heating treatments on both soy flour varieties are illustrated in Table (1).

The obtained results show that treatment of soy flour with heating alone does not inactivate all trypsin inhibitor. On the other hand, the amount of heat required to destroy trypsin inhibitors in soybean flour may destroy lysine and sulfur-containing amino acids and induce browning reactions (Rios Lriarte and Barnes 1966)

Treatment of soy flour at 100°C with 0.03 and 0.06 (M) sodium sulfite for 1hr reduced the trypsin inhibitor content to zero. Also, the results show that reduction trypsin activity by increasing the sulfite concentration up to 0.06 was limited comparing with 0.03 (M). It should be noticed that a graded response to increasing sulfite concentration was not evident and the essentially full improvement in protein quality occurred with low sulfite level (0.03M). hence , it could be concluded that heating of soyflour in the presence of sodium sulfite is highly effective in facilitating inactivation of trypsin inhibitors in soy products. The obtained results are in agreement with those reported by Friedman and Gumbmann (1986). Heat plus sulfite may act synergistically in improving the nutritional quality of soy Disulfide bonds of trypsin inhibitors and structural proteins in soyflour may be rearranged by the catalytic action of sulfite ions to produce new structural without altering the amino acid composition entities 1973; Stevens 1973; Wedzicha. 1984) Also, the (Friedman new structures may lose their ability to complex with trypsin (Friedman and Gumbmann 1986)

The results in Table (1) illustrate that heating soy flour at 75°C and 100°C for thr in the presence of cysteine (0.128M) inactivated the trypsin inhibitor activity to 7.32.3.88% in the case of Clark variety and 9.38.5.21 % in Crowford variety These results prove that treatment of soy flour with cysteine form new half-cystine residues into native proteins with a corresponding improvement of nutritional quality

Table (1): Effect of heating treatments for (1hr) on trypsin inhibitor activity of soyflows.

Heading treatment		Clark	Variaty				Crowfo	Crowford variety	()	THE STATE AND A THE COMMENT OF THE STATE OF
And the state of t	Hearing without	Heating	Heating in the presence of	ence of	Heating in the	Hearing without	Heating in	Heating in presence of sodium	codeum	Hasting in the
	any additatives	sodium	sodium sulfite (Na2SO4)	425O4)	presence of	any addicatives	suifice	suifite (Na2SO4)		presence of
		0.015 M 0.03 M	0.03 M	0.06 M	0.128 M cysteine		0.015M	0.03 M	0.03 M 0.06 M	O. 128 M Cystenne
				% Tryp	% Trypsin inhibitor activity (Il activity)	(II activity)		Constitution of the Consti		terin daylogan di sessim a talumin di seringan paranga aprocessió
Room temperature	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	00.001
(control)										ocusidents.
Heading (-15 °C)	68.97	スマ	32.26	29.94	22.87	62.52	36.96	30.77	30.5	20.2
Heating (65 oC)	51.72	29.38	10.22	9.6	5.73	68.91	27.35	10.68	10.84	14,26
Heating (75 °C)	7.52	15.79	0.13	0.12	7.32	40.38	13.12	0.098	0.11	9.38
Heating (100 °C)	36.51	27.	0.00	0.00	3.88	29.47	9.4	00.0	0.00	5.21

From the economical point of view, heating of soy flour at 75°C with 0.03(M) sodium sulfite for 1hr is the most effective and suitable treatment since cysteine is more expensive and less effective.

II: Effect of soyflour heating on PAGE patterns of soybean protein extraction:

Soybean protein Clark and Crowford varieties under investigation were extracted by NaOH (0.02N) and separated electrophoretically. Polyacryalmide gel electrophoresis (PAGE) separated each protein to 12 staining bands. The effect of heat treatments at 45, 65, 75 and 100°C for 1hr on the extracted proteins are illustrated in Fig. (1,A) which show a gradual reduction in the number of the separated bands by increasing heat temperature up to 75°C.

Samples heated at 45°C showed the presence of 10 bands and decreased 6 bands by heating at 65°C. At 75°C and 100°C only 4 stable bands were noticed (bands 6,7,9 and 10) in both Clark and Crowford varieties. This observation may be due to the destructive effect of heat treatments, on high molecular weight peptides, to yield a lower molecular weight peptide chains, because, no destructive effect was noticed in the low molecular weight molecules.

Also, the effect of different heat temperatures for 1hr in the presence of 0.03 (M) Na₂SO₃ or 0.128 (M) cysteine on the extracted soybean protein was electrophoretically studied and illustrated in Fig. (1, B.C).

The obtained results indicate that heating soy flour for 1hr in the presence of sodium sulfite (0.03M) at 65 °C showed the presence of 7 bands Fig. (1,B). In addition, it was noticed that some bands were stable to heat treatments. New bands were formed and others disappeared. This observation may be attributed to that structural proteins in soy flour may be rearranged by the catalytic action of sulfite ions to produce new structural entities without altering amino acids composition (Friedman 1973 and Wedzicha, 1984).

Polyacrylamide gel electrophoresis patterns of soybean flour protein extraction after heat treatments in the presence of cysteine (0.128 M) indicated the presence of 10 bands at 45 °C (Fig.,1,C). The number of bands decreased to 8 and 7 when the samples were heated at 65 . 75 and $100\,^{\circ}\text{C}$ Results also show that addition of cysteine to soy

■ Strong
staning intensity
Medium

Weak

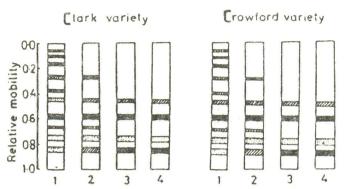


Fig. (1,A) : Meating only .

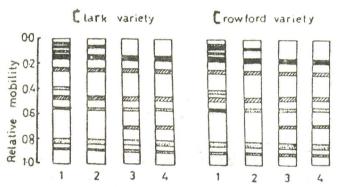


Fig. (1, B): Heating in the presence of 0.03

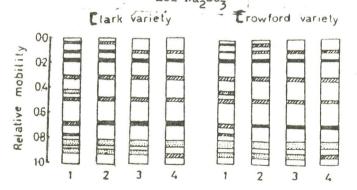


Fig. (1, C): Heating in the presence of 0.128 mol cysteine.

Fig. (1): PAGE patterns of soybean flour protein extraction after different heating treatments for 1hr.

- 1) Reating at 45°C 3) Heating at 75°C
- 2) Heating at 650g 4) Heating at 100°C

flour decreased the destructive effect of heat on proteins . This may be according to the fact established before by Friedman $\underline{\text{et}}$ al (1984) that heating soy flour in the presence of cysteine modified the proteins through the formation of mixed disulfide bonds which leads to less destruction of the polypeptide chains and appearance of new bands.

III: Effect of heating soy flour on the extracted protein subunits

Polyacrylamide gel electrophoresis in the presence of the detergent sodium dodecyl sulfate (SDS-PADGE) was used to determine the subunits molecular weights of the protein extracted from soybean flour after different heat treatments. The SDS-PAGE polypeptide patterns of the overall polypeptides in soybean protein together with protein standards are shown in Fig. (2).

The extracted protein of control samples (unheated Clark and Crowford soy flour proteins) showed the presence of 12 subunits with molecular weight ranging from 89,000 to 18,000 (D) in Clark flour variety and 93,000 to 18,000 (D) in Crowford variety. The staining intensity of these bands were stable when heated at 45°C for 1hr except band number 1 in case of Crowford soy flour protein which disappeared.

Table (2) and Fig. (2,A) illustrate the effect of heating temperatures i.e. 45, 65, 75, and 100 °C for 1hr on molecular weights of soy bean flour protein subunits. The obtained results show that noticeable reduction in the number of the extracted protein was observed when the soy flour was heated to temperatures more than 45 °C. The SDS- PAGE patterns illustrate that heating soy flour over 45 °C caused a reduction in the intensity of some bands and disappearance of high molecular weight subunits (between 93,000 and 60,000 D). This is due to the destruction of high molecules (Mw) to lower molecules (Mw).

The data concerning the effect of different heat temperatures (45, 65, 75 and 100 °C for 1hr) on Clark and Crowford soybean flour protein subunits in the presence of (0.03M) Na₂SO₃ are shown in Table (3) and illustrated in Fig. (2,B). By comparing the SDS-PAGE pattern of this heat treatment with that obtained in heating alone (Fig. 2,A; and Table 2), it was noticed that addition of Na₂SO₃ (0.03M) stop to some extent the destruction effect of heat on protein molecule. Therefore high molecular weight subunits (between 90,000 and 60,000D) were very slightly affected.

Table (2.) Molecular weights of soybean protein subunits extraction at different heating for 1 hr.

Band		Cla	Clark variety	Ęy		0	Crowford variety	variety	Comments con a final part of the contract of t	
	gontrol		pe	heating		control		par	heating	
on application of the state of		45 oc	20 S	75 oc	100 oc	en e	45 OC	J ₀ ≤9	75 OC	100 oc
7	89000	89000	8 8	9 9 9	89 e9 e8 e9	93000	9 8	9 9 2	8 9 8	07 e8 dO 40
2	83000	83000		cate and time ado	do see on the	00068	00068	8 8	db ent do cos	600 and 400 600
m	79000	79000	400 400 400 400		ope des elle con	81000	81000	99 cm cm cq	ate can con our	689 cas cas das
4	72000	72000		139 000 000 000 000	ter cuts day with	75000	75000		GER - GER - GER - GER	othe artis even quit
2	00069	00069	9 9 8	\$5 GB GB	was don don std	70000	70000	9 8 9	60 00 0a 0a	100 cm cm cm
9	00009	00009	28000	1	9 5	63000	63000	630 GD 1000 GD	da our ene ed	ess que esp ass
7	53000	53000	57000	57000	57000	53000	53000	90 00 00	\$ 08 08 08	cm sin 030 siz
89	39000	39000	41000	41000	41000	41000	41000	41000	41000	41000
6	37000	37000	30000	30000	30000	38000	38000	39000	39000	39000
10	22000	22000	22000	22000	22000	25000	25000	22000	22000	22000
11	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000
12	17000	17000	8 8	8 8	9 2 8	17000	17000	9 9	3 9 1	8 9

rable	<pre>fable (3) Molecular weights of soybean protein subunits extraction at different heating with 0.03 mol Na2SO3.</pre>	Molecular weights of E heating with 0.03 mol	ights of 0.03 mc	f soybean polynazsos.	n protein 03.	subuni	ts extrac	tion at	differen	t.	
		Cla	Clark variety	ety			Crowford variety	variety			
Band	Control		ating+0.	Heating+0.03M Na2SO3	,03	Control		eating+	Heating+ 0.03M Na2SO3	2803	
		45 OC	65 oc	75 oc	100 oc		45 OC	00 S9	75 oc	100 °C	
-	89000	1 1	1 1		\$ \$ \$	93000	20 CD CD CD	9 8	0 00 00	MP 400 500 600 400	
2	38000	83000	83000	83000	83000	88000	88000	88000	88000	88000	
2	79000	79000	79000	79000	79000	81000	81000	81000	81000	81000	
*	72000	72000	72000	72000	72000	75000	75000	75000	75000	75000	
5	00069	***			8 8	70000	8 8 8	9 9		Allo elle que min elle	
9	00009	57000	57000	57000	57000	63000	00059	65000	65000	00059	
7	53000	20000	20000	20000	20000	53000	53000	55000	53000	53000	
8	39000	8 8	8	das dis qui con qui	nes des des ses	41000			9 9 9	der der der von	
6	37000	36000	36000	36000	36000	38000	38000	38000	38000	38000	
10	22000	23000	23000	23000	23000	25000	25000	25000	25000	25000	
11	19000	20000	20000	20000	20000	19000	20000	20000	20000	20000	
12	17000			70 00 00 00 E	9 9 5 6	17000	op om en des de		the dip one one op-		

I: Clark variety

III: Crowford variety

II

I

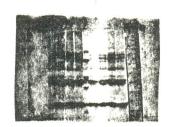


Fig. (2, A) Heating only .

- 1) Sample without heating .
- 2) Heating at 45°C.
- 3) Heating at 65°C.
- 4) Heating at 75°C.
- 5) Reating at 100°C.

1234 1234

I II

12-34 1-2-3-4

- Fig. (2, B) Heating in the presence. Fig. (2, C) Heating in the of 0.03 mol. Na₂SO₃.

 presence of 0.128M cysteine
 - 1) Heating at 45°C.
 - 3) Heating at 75° C.
- 2) Meating at 65°C.
 - 4) Heating at 100°C.
- Fig. (2, A,B,C): SDS PAGE patterns of soybean flour proteins extextraction after heating treatments for 1hr.

Data in Table (4) and Fig.(2, C) show the effect of heating soy flour Clark and Crowford varieties in the presence of (0.128 M) cysteine at different heat temperatures on the extracted protein subunits. The results indicate that the heated samples had 8 subunits with molecular weights ranging from 87,000 to 20,000 (D) for both varieties. On other words Clark and Crowford proteins showed a disappearance of four subunits i.e. 4,7,11.12,for the former and 1,7,10,12 for the latter ones. Molecular weights of other subunits were decreased owing to the formation of new half cystine peptide residues. These results confirm the idea that heating soy flour in the presence of cysteine modified the structure (Friedman et al. 1984).

IV: Effect of heat treatments on soybean flour protein digestibility:

Data in Table (5) show the effect of different heating treatments for 1hr on soy flour protein digestibility index.

The obtained results indicated that digestibility index of the native flour were 72 (Clark) and 71.7 (Crowford) then were improved by increasing heat temperature. Therefore, in both varieties the highest digestibility index i.e. 80.10 and 78.23 were observed after heat treatment at 100°C for 1hr. Such improvement could be partially attributed to protein denaturation which improves protein susceptibility to enzyme attack. Furthermore, inactivation of the trypsin inhibitors would certainly improve in-vitro protein digestibility (Metry et al., 1985). Such results are in agreement with that reported by Sathe and Salunkhe (1981).

Heat plus sulfite increased the protein digestibility and improved the nutritional quality of soy flour. Increasing sulfite concentration showed slight increment in digestibility index. The most suitable improvement in protein quality occurred with the sulfite level of (0.03M) at 75°C for lhr for both Clark and Crowford varieties. These results may be attributed to the proteins modification through a rearrangement of protein disulfide bonds catalyzed by So3 = ions. This modification leads to loss inhibitory activity and increased protein digestibility and nutritive values (Friedman et al .,1984). These results are in agreement with those reported by Friedman and Gumbman (1986).

Heat plus cysteine treatment of soy flour Clark and Crowford varieties increased protein digestibility comparing with heat treatments alone The optimum conditions for

Table (4) Molecular Weights of soybean protein subunits extraction at different

Table(Table(4) Molecular Weights of Soybean protein submits extraction at unification heating treatments with 0.128 mol cysteine	ilar wei ng treat	Molecular Weignts of soybean protein subun. heating treatments with 0.128 mol cysteine	soybean th 0.128	mol cys	subunits	es co	יים של יים	1070171	
Andread Control of the Control of th		Cla	Clark variety	ty		9	Crowford variety	variety		
Band	Control	He	Heating+0.128M cysteine	128M cys	teine	Control	H	sating+	Heating+ 0.128M cysteine	ysteine
		45 oc	20 S9	75 oc	100 oc		45 oc	20 59	75 00	100 oc
prof	89000	87000	87000	87000	87000	93000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	400 MM cots and cots	40 40 do 40 40 40	ton one was see equ
2	83000	83000	83000	83000	83000	89000	87000	87000	96018	87000
3	79000	75000	75000	75000	75000	81000	83000	83000	83000	83000
₩	72000	20 GB GB GB	8 8	8 8 8	8 8 8	75000	75000	75000	75000	75000
2	00069	00019	00019	00019	00029	70000	00019	00019	00019	00029
9	00009	26000	26000	26000	26000	00089	26000	26000	56000	26000
7	53000	9 8	8 9 00			53000		60 mp 410 dg 400	CD+ CD0 CO0 G00 F20	000 000 000 000 000
00	39000	39000	39000	39000	39000	41000	39000	39000	39000	39000
0	37000	38000	38000	38000	38000	38000	38000	38000	38000	38000
10	22000	19000	19000	19000	19000	25000		8 8		60 ga 40 ten 60
11	19000	8 8	8 8		1	19000	19000	19000	19000	19000
12	17000			1 8	***	17000	nameleade executadores parties es con	Specific pin are the	NO 100 MI NO 100 MI	9 11 00 00 00

Table(5): Effect of the heating treatments(1hr) on soyflour protein digestibility index .

	Cla	rk variet					Crowl	ord variety	<u>/</u>
Without		Na ₂ SO ₃		Cysteine	Without		Na ₂ SO ₃		Cysteine
any additative	s 0.015 M	0.03 M	0.06 M	0.128 M	1	es 0.015 M	0.03 M	0.06 M	0.128 M
72.00	-				71.70	. , -			
73.30	80.09	82.03	82.03	82.03	72.00	77.83	78.13	79.00	83.11
75.90	81.73	82.51	83.19	83.19	73.21	80.81	81.71	81.75	84.41
77.50	83.14	84.90	84.93	84.93	74.91	82.14	83.83	84.28	85.03
80.10	84.15	85.11	84.95	84.95	78.23	84.21	85 19	85.31	85.81
	72.00 73.30 75.90 77.50	Without any additatives 0.015 M 72.00 73.30 80.09 75.90 81.73 77.50 83.14	Without Na ₂ SO ₃ any additatives 0.015 M 0.03 M 72.00 73.30 80.09 82.03 75.90 81.73 82.51 77.50 83.14 84.90	any additatives 0.015 M 0.03 M 0.06 M 72.00	Without Na ₂ SO ₃ Cysteine any additatives 0.015 M 0.03 M 0.06 M 0.128 M 72.00	Without Na ₂ SO ₃ Cysteine Without any additatives 0.015 M 0.03 M 0.06 M 0.128 M additative 72.00	Without Na ₂ SO ₃ Cysteine Without any additatives 0.015 M 0.03 M 0.06 M 0.128 M additatives 0.015 M 0.03 M 0.06 M 0.128 M additatives 0.015 M 0.03 M 0.06 M 0.128 M additatives 0.015 M 0.03 M 0.06 M 0.128 M additatives 0.015 M 0.03 M 0.06 M 0.128 M 0.015 M 0.01	Without Na ₂ SO ₃ Cysteine Without Na ₂ SO ₃ any any additatives 0.015 M 0.03 M 0.06 M 0.128 M additatives 0.015 M 0.03 M 0.06 M 0.128 M additatives 0.015 M 0.03 M 0.03 M 0.06 M 0.128 M additatives 0.015 M 0.03 M 0.03 M 0.00 N 0.128 M 0.00 N 0.015 M 0.03 M 0.00 N 0.128 M 0.00 N 0.015 M 0.03 M 0.015 M 0.015 M 0.03 M 0.015 M 0.015 M 0.03 M 0.015 M 0.015 M 0.015 M 0.03 M 0.015 M 0.015 M 0.015 M 0.03 M 0.015 M 0.01	Without Na ₂ SO ₃ Cysteine Without Na ₂ SO ₃ any and ditatives 0.015 M 0.03 M 0.06 M 0.128 M additatives 0.015 M 0.03 M 0.06 M 0.06 M 0.128 M additatives 0.015 M 0.03 M 0.06 M

Table (6): Effect of the heating treatments for (1hr)en the protein amino acids percentage (g/100g protein) of soyflour (Clark variety)

Amino acida	Without heating	Heati	ing	Heating in th (0.03 M) N	ne presence of Na2SO3	Heating in th	e presence of cysteine.
		65 °C	75 °C	65 °C	75 °C	65 °C	75 °C
E.A.A.							
1.ys	5.5	4.71	4.43	4.69	4.45	5.01	4.95
Leu.	6.3	6.33	5.56	6.38	5.88	6.24	5.89
Isoleu.	4.52	3.39	3.19	3.40	3.35	3.19	3.45
Cys + Met.	0.14+1.69	0,10+0.98	0.06+0.85	0.16+0.96	0.16+0.86	1 44+1 78	1:40+1.44
Phe. +Tyr.	5:15+4.21	4.78+3.93	4.55+3.91	4.92+4.19	4.42+3.95	4.93+3.81	4.82+3.62
Thr.	3.83	3.74	3.71	3.83	3.76	3.83	3.66
Val.	5.02	4.86	4.45	5.11	4.88	5.21	4.36
His.	3.40	3.12	3.09	3.33	3.21	3.31	3.10
T.E.A.A.	39.81	35.94	34,60	36.97	35.72	38.57	36.71
N.E.A.A.							1
Arg.	5.82	3.36	5.31	5.68	5.50	5.56	5.36
Asp.	10.41	9.71	9.63	10.99	9.99	10.89	10.18
Glu.	15.25	19.99	13.81	15 39	14.49	15.41	14.56
Ser	4.68	4.50	4.49	4.66	4.48	4.65	4.50
Pro.	9.22	9.88	9.74	10.11	9.79	9.85	9.79
Gly	4.09	3.87	3.84	3.95	3.82	3.87	3.84
Ala.	4.41	4.33	4.21	4.35	4 26	1 14	4.30
T.N.E.A.A	53.88	52.64	52.03	55.15	52.33	54 57	52.63
Τ.Α.Λ.	93.69	88.58	86.63	92.12	88.05	94.14	89.34

maximum digestibility was noticed at 75°C for 1hr. These results may be due to the formation new half -cysteine residues into native proteins which leads to loss its inhibitory activity and increased protein digestibility and nutritive value (Friedman et al., 1984).

V: Effect of heat treatments on the amino acids of Clark soybean flour:

Abd-El-Aleem (1992) indicated that there is no differences in both varieties, i.e. Clark and Crowford, seeds and protein isolate in their total, aromatic and basic amino acids. On the other hand, Clark protein isolate contains higher amount of essential amino acids. Amino acids content of Clark soybean flour before and after different heat treatments were determined and tabulated in Table (6).

Results show that heating soy flour (without any additatives) caused a slight decrease on essential and non-essential amino acids. Although heating the flour at 75°C was not noticed to have more destructive effect on the amino acids than heating at 65°C.

The obtained results show that heating of flour in the presence of 0.03 (M) Na₂SO₃ prevented to some extent the destruction of some amino acids (Table, 6). Consequently, the amount of the total essential amino acids was improved and became similar to the amount in the native flour. Also, heat treatment of soyflour at 65°C in the presence of sodium sulfite (0.03M) yields a product better in its amino acids content than that at 75°C. These results are in agreement with that reported by Friedman (1973), Wedzicha (1984), and Metry et al. (1985) on chick pea proteins.

Results in Table (6) illustrate that addition of cysteine to soy flour improved the amounts of sulfur amino acids in the flour. The amounts of both cysteine and methionine increased from (0.10 and 0.98) to (1.44 and 1.78) and from (0.06 and 0.85) to (1.40 and 1.44) on heating at 65°C and 75°C, respectively. Also, the amounts of the essential amino acids is higher after cysteine treatment than the heat treatment only (38.57 and 36.71% for the former, 35.94 and 34.60 % for the latter). On the other hand, the amounts of essential and non-essential amino acids are closed to its amount in the native soy flour protein. It can be concluded that addition of cysteine to soy flour protect protein amino acids destruction under heat treatment and enrichment the sulfur amino acids of the flour. These

results are in agreement with those reported by Friedman (1973) and Wedzicha (1984).

REFERENCES

- Abd-El-Aleem, I.M. (1992): Chemical studies on soybean protein; Ph.D. Thesis, Fac. of Agric., Moshtohor, Zagazig Univ.
- Birk, Y. (1961): Purification and some properties of a highly active inhibitor of trypsin and chymotrypsin from soybean; Biochim. Biophys. Acta., 54, 378-381.
- Ford, J.F. and Salter, D.N. (1966): Analysis of enzymically digested food proteins, J. Nutr., 20,483.
- Friedman, M. (1973): The chemistry and biochemistry of the sulfohydryl group in amino acids, peptides and proteins; p.199, Pergamon Press Oxford, England
- Friedman, M., Grosjean, O.K.and Zannley C.J. (1982): Inactivation of soybean trypsin inhibitor by thiols; J.Sci. Food Agric., 33, 165-172.
- Friedman, M., Gumbmann, M.R., and Grosjeon, O.K. (1984):
 Nutritional improvement of soy flour; J. Nutr., 114,
 2241-2246.
- Friedman, M. and Gumbmann, M.R. (1986): Nutritional improvement of soy flour through inactivation of trypsin inhibitors by sodium sulfite; J. Food Sci., 51, 1239 1241.
- Hamerstrand, G.E.; Black, L.T:; and Glover, J.D. (1981): Trypsin inhibitors in soy products, modification of the standard analysis procedure; Cereal Chem. 58, 42-45.
- Laemmli, U.K. (1970): Cleavage of structral proteins during the assembly of the head of bacteriophage T4; J. Nutr., 227, 680-685
- Melnychyn, P. and Wolcott, J.M. (1971): Isolated soy protein, U.S. Patent; 3,630 -753.

- Metry, S.W., El-Morsi, E.A., and El-Dein, M.A (1985): Effect of roasting on chemical composition amino acid content, trypsin inhibitor and in-vitro protein digestibility of chick pea seeds 2 nd Agric. Conf. Bot. Sci., 21-24 Sept. Mansoura Univ., 363 378 (1985)
- Moore, S. Spachman, D.H., and Stein, W. (1958): Chromatography of amino acid on sulphonated polystyrene resins, Anal. Chem; 30, 1185-1190
- Rackis, J.J. (1965): Physiological properties of soybean trypsin inhibitors and their relationships to pancreatic hypertrophy and growth inhibition of rats, Fed, Proc. Am. Soc. Exp. Biol., 24, 1488-1497.
- Rackis, J.J. (1972): Biologically active components in soybean chemistry and technology, Ed. Smith , A.K. and Circle , S.J. Vol., 7 P, 158, Avi Publ. Co., Westport, Conn.
- Rackis , J.J. (1974): Biological and physiological factors in soybeans, J.Am. oil chem., Soc. , 161A- 174A.
- Rios Lriarte, B.J. and Barnes (1966): The effect of over heating on certain nutritional properties of the protein of soybeans, Food Technol., 20, 835-838,
- Safwat , H. A. (1985): Biochemical studies on soybean proteins , M.Sc . Thesis , Fac. of Agric . , Ain Shams Univ.
- Salama, H.D. (1988): Proteinous evaluation of some leguminous seeds, Ph. D. Thesis, Fac. of Agric., Ain Shams Univ.
- Sathe, S.K. and Salunkhe, D.K. (1981): Studies on trypsin and chymotrypsin inhibitor activities., Hemagglutiating activity, and sugars in the Great Nothern Beans (Phasealus Vulgaris L.), J. Food Sci., 46, 626-629.
- Stevens, D.L. (1973): Reaction of wheat protein with sulfite. III. Measurement of labile reactive disulfide bonds in glidin and in the protein of aleurone cells, J. Sci. Food Agric., 16, 279.

Wedzicha, B.I. (1984): Chemistry of sulfur dioxide in foods, Applied Science Publishers, P 69 El-Sevier London and New York

يهدف هذا البحث الى تحسين خواص دقيق فول الصويا لصنفى كلارك وكروفورد باستخسدام المعاملات الحرارية المختلفة (التسخين فقط وكذلك التسخين بعد اضافة كبرتيت الصوديسسوم أو السسيتئين) وقد أوصحت النتائج أن التسخين فقطأدى الى تثبيط فعل مثطبات أنزيسسسم التربسين (TT) بحوالى ١٤ - ٧٠٪ بينما عند تعريض دقيق فول الصويا على نفس درجسة الحرارة (٧٥ م) لمدة ساعة في وجود كبرتيت الصوديوم (٣رمول) أدى الى تخفيض نشاط مثبطات أنزيم التربسين الى درجة الصفر تقريبا _ أما في حالة اضافة المسبتئين (١٣٨رمول) وتحسست نفس الظروف أدى الى تخفيض النشاط بنسبة ٩٠ - ٩٠٪ مقارنة بالكنترول ـ

باستخدام التفريد الكهربائي (PAGE) اتضح ان اكثر سلاسل البروتين التي حسسدت لها تكسير هي الجزئيات التي لها درجة قطبية عالية خاصة في حالة المعاملات الحرارية الستسيول) بدون أي اضافات أما بالنسبة للمعاملات الحرارية في وجود كبرتيت الصوديوم (٣٠ مسسسول) أو السبتئين أظهرت أقل تكسيرا في سلاسل البروتين .

وقد وجد باستخدام التعريد الكهربائى فى وجود مادة صوديوم دوهيسينل SDS-PAGE)
أن نسخين دقيق فول الصوياعلى درجة حرارة أعلى من درجة ٤٥ م لمدة ساعة ، أدى ذلك السسسى اختفاء بعض وحدات البروتين (Subunits) دات الاوزان الجزيئية التى تتراوح ما بين ١٠٠٠ الى ١٠٠٠ دالتون وفى حالة اصافة كبرتيت الصوديوم يتركز ٣٠رمول أو السستئين يتركز ١٢٨رمول أدى ذلك الى نقص بسيط فى بعص وحدات البروتين ذات الورن الجزيئي العالى.

وقد أو صحت متائج معامل قابلية البروتين للهصم أن الدقيق الخام لفول الصويا لكسسسلا الصنفين (كلارك ، كروفورد) قد تحسن مع اردياد درجة حرارة التسخين وخاصة التسخين في وجسسود كبرتيت الصوديوم (٣٠مول) أو السستئين (١٢٨رمول) على درجة حرارة ١٠٠٠ م لمدة ساعة،

أوصحت أنظمه الاحماص الامينية لبروتينات دفيق قول الصويا (صنف كلارك) أنه باضافينست كبرتيت الصوديوم (٣رمول) أو النستنفين (٢٨ رمول) والتسخين أدى الى عدم التكسير النسسي حد ما في بعض الاحماض الامينية الكبرنية وكذلك قان كميات الاحماض الامينية الاساسية والعينسسر أساسية أصبحت فريبة من الاقيق العير معامل حراريا خاصة النسخين على درجة حرارة ٦٥ م لمنسدة